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ABSTRACT

In this paper, the notion of Differential Dynamic Programming
is used to develop new second-order and first-order successive approx-
imation methods for determining optimal control.

The unconstrained, non-linear control problem is first considered,
and a second-order algorithm is developed which has wider application
then existing second-variation and second-order algorithms. A new
first-order algorithm emerges as a special case of the second-order
one,

Control inequality constraints are introduced into the problem and
a second-order algorithm is devised which is able to solve this con-
strained problem, It is believed that control constraints have not been
handled, previously, in this way. Again, a first-order algorithm em-
erges as a special case,

The usefulness of the second-order algorithms is illustrated by
the computer solution of three control problems.

The methods presented in this paper have been extended, by the
author, to solve problems with terminal constraints and implicitly
given final time. Details of these procedures are not given in this

paper, but the relevant references are cited,

- iii -
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Notation
The following notation denotes the inner product of two n-dimensional

vectors x and vy,
n’-.
(x,y) =% x.v.
. 1°1
i=1
A power series expansion, to second-order, of a scalar V(x)

about X (x an n-vector) is represented in the following way:

V(X + 8x) = V() + (Vx, bx ) +% <6x,vxx6x>

2

3
where V. = EV— evaluated at X and V. = evaluated at X,
x X XX ax2

Vx is an n-dimensional column vector and VXX is an n x n symmetric
matrix,
Further notational details are described in the text, when required.
The following abbreviations are used:
D. D. P. Differential Dynamic Programming
P. D. E. Partial Differential Equation
L. Q. P. Control problem with linear dynamics and quadratic perfor-
mance criterion

r. h. s. right hand side

l. h. s. left hand side
w. r. t. with respect to
§. a. m. 'step size adjustment method'



1. Introduction

In recent years, much interest has centered on the problem of
determining optimal control for dynamic systems described by non-
linear ordinary differential equations of the following form:

X = f(x, u; t); x(to) =% (1)

The criterion of optimality is the minimization of the performance

index or so called 'cost functional'

t
Vixt ) = ftf L(x, us t)dt +F (x (t) t) (2)
o]

x(t) is an n-dimensional vector function of time describing the state of

the dynamic system at any time t € [to,t (The symbol x is also taken

f]‘
to mean x(t). ) u(t) (or u) is an m-dimensional vector function of time,
At any time t € [totf], u represents the control variables available for
manipulation.

L and F are non-linear scalar functions of their arguments,

f is an n-dimensional vector function of its arguments.

It describes the dynamic structure of the system.

The final time t, is assumed to be given explicitly.

f
The notation f(x, u;t) should be understood in the following way:
'f’is a function of x, u and, maybe explicitly, of time. At a particular
time t € [to’tf]’ f is a function of x and u'. The semi-colon is used to
separate t from the other arguments, Some of these arguments may
be time invariant parameters. (Some of the u's may be control para-
meters, say,)
Similar remarks apply to V, F and L.

Sometimes it is required that x and u satisfy some or all of the

following constraints,



g(u, t) <o (3)

P (x(t), te) =o (4)

where g is a p<m-vector function of u at time t.
y is an s < n-vector function of x at time tf. All functions

are assumed to be continuously differentiable in each argument up to
any order required,

The object of the control problem is to choose u(t) ; t € [tO’tf]
such that (3) and (4) are satisfied and V, given by (2), is minimized,

Merriam [1], Mitter [2] and McReynolds and Bryson [3] are some
who have developed second-variation type algorithms for successively
improving a nominal, guessed control function. More recently Mayne [4]
has developed a second-order algorithm using Dynamic Programming.
(Differential Dynamic Programming) Jacobson [5], [6] and [7] has further
developed the notion of D. D, P. and in [7], showed that the second-
variation algorithms of Mitter and McReynolds and Bryson are only
approximations to Mayne's second-order method.

All the above mentioned algorithms have the following drawbacks:

1) H:nll (%, , Vx; t), the inverse second partial derivative matrix
of the Hamiltonian w, r, t, u, evaluated along a nonimal trajectory X, 1,
must be positive-definite for t € [to,tf]. This restriction is very severe
since it implies that H must be strictly convex, globally, w.r.t.u. In
many problems one finds that H is strictly convex only in the neighbor-
hood of its minimum w, r. t. u,

2) Inequality constraints on control variables cannot be handled
directly. They have to be approximated by penalty functions.

3) Requirement 1) excludes the 'bang-bang' type of problem where

H = o.
uu
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It has been shown, [6], that if instead of allowing only small
changes in control at each iteration, large (or global) changes in con-
trol are permitted, then difficulties 1), 2) and 3) can be overcome.

The purpose of this paper is to report new second-order and
first-order algorithms, developed in [6], which do not suffer from

drawbacks 1) and 2),

2, Differential Dynamic Programming

Mayne [4] introduced the notion of D, D, P. The treatment in
this section is somewhat different, but was motivated by Mayne's paper.
(This D. D. P. approach has been described in [7], but a description
is included in this paper for completeness).

It is weli known that the optimal cost Vo(x; t) satisfies the following

P. D E.

VO (xyt) = min [L(x,ut) +{VS (x3t), f(x,ust)) ] (5)
St u X

Equation (5) is Bellman's P. D. E. for the optimal cost v, (In this
equation one should realise that x is an optimal quantity and so should

be written with Superscripto. However, for simplicity, the supersc:ripto
appears on 'V quantities' only.)

It is assumed that Vo(x; t) is sufficiently smooth in x and t to allow
the derivation of (5) which requires that the second partial derivatives of
Vow. r. t. x,t exist, [8]

Assume that the optimal control ul(t) st € [to, tf] is unknown but that
a nominal control @ (t);t € [to, tf] is availble,

On application of the nominal control a nominal state trajectory
X (t),t ¢ [to,tf] is produced by (1). The nominal cost V (xo',to) is calcu-

lated using (2).
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Equations (1), (2) and (5) may be written in terms of the nominal
trajectory by setting:
x =% + ox
u=1ua+ du (6)
dx and du are the state and control variables, respectively, measured
w. r.t. the nominal quantities X,4d; they are not neccessarily small
quantities,

Equations (1), (2) and (5) become:

d_(R+0x) = £(x% +0x,8+0ust); ®(t) +Ox(t) =x_ (7)

dt
tf

v (xo" to) = [ L(x +6x,u + 8ust)dt + F (i(tf) + éx(tf)" tf)
. (8)

AVC (% 4+ 0x3t) = min [L(X + 6x,G + duyt) + (VO (x + bx,t),
ot du x

f(X + 6x,T + Sujt)V) ] (9)
These equations are exactly equivalent to (1), (2) and (5) since no
approximations have been introduced: the nominal trajectory has been
made into a reference trajectory,
Assume now that the optimal cost is smooth enough to allow for

a power series expansion in 8x about X.
VO (x + 8x;t) = VO(%;t) +(V::, ox ) + 8 <5x,V§x 6x )
+ higher-order terms (10)
The optimal cost VO(%;t) = V(%;t) + a®(%; t) (11)
where ao(X', t) is defined as the difference between the optimal cost

VO(%; t) obtained by using the optimal controls u®(r) = a(n) + du’m)
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T € [t,tf] and the nominal cost V (X;t) obtained using the nominal con-
trols a(T); T € [’C,tf]
From (10) and (11):

Vo(i + 0x;t) = V(r;t) + 2% Vi, 8x ) +% € ox, Vix 8x )

+ higher-order terms in 0x (12)

Substituting (12) into (9) one obtains:

3T -2 v V2
-at -3? -< ot =, 8x ) - & (6x, .a_t._x_}s 0x ) + higher-order

terms

= min [L(X + 0x,3 + 8u;t) + <V§ + V;x + higher-order terms,
du

f(X +0x,u + dujt) ) ] (13)

Equation (13) is generally impossible to solve, as it stands, owing
to the possibly infinite computing time, and storage requirements for
the parameters of the power series expansion, However, one can trun-
cate the power series provided that it is ensured that the truncated terms
are negligible, In order to do this, the size of 8x must, somehow, be
limited, That is, the trajectory X(t) + dx(t);t € [to,tf] must be kept in
the neighborhood of the nominal trajectory.

Assume that 0x is kept small. (Methods of ensuring this are dis-
cussed later, At this point it is sufficient to note that, because 5x(to) =0,
the 8x's produced in the interval [to,tf] are caused only by du acting
through Equation (7).) Assume further, that the 8x's produced are small
enough such that an expansion up to quadratic terms only, in 8x, is suf-
ficient to represent v° adequately in the neighborhood of the nominal

trajectory. Equation (13) becomes:




S VAN PO SN 3 (o NVex oy 2
3t I T3 X * 3t *7=

min [L (% + 8x,T + dujt) + <vx +V, 0k (% + & u Su; t) )]
(14)

and V (X +0x,t) =V (=, 8) +V__ bx (15)
x x XX

Notice that expanding V to second-order only in 8x produces, on

differentiating, an expression for Vx(i + 0x;t) which is accurate only

to first-order in 8x.

In subsequent sections of this paper, an algorithm shall be con-
sidered 'second-order' if, given the a priori expansions (15) for V and
Vx’ all second-order terms arising on the r, h. s. of (14) during the
derivations, are accounted for,

The superscript0 on V in (14) and (15) has been dropped for thke
following reason:

Modelling the cost surface, locally, by a second-order expansion
is made possible by keeping dx small. So the cost described by the
truncated series (15) is optimal, subject to the proviso that the du's
are chosen in such a way that the 8x's remain small. It is therefore,
not the truly optimal cost given that any size of dx is allowed.

V, given by (15), is the optimal cost Vv° when starting in state-

X + 8x at time t if;



either 1) The nominal trajectory is sufficiently close to the
optimal one, i.e. if U(T) is close to (1), T € [t,tf] then the minimizing
Su's will be small and, from (7), the resulting 8x's will be small so
that the size of the 0x's need not be restrained artifically. The expan-
sion of V up to second-order will thus be adequate to describe the true
optimal cost V° in the neighborhood of the nominal trajectory. V; will
also be described adequately,

or 2) The problem is L.Q. P. [9].

Equation (14) can be used to develop methods for determining the
optimal control u® (t); te [to,tf] by successively improving the current

nominal trajectory T (t);t € [to,t See [5], [6] and [7].

f]'

3. A New Second-Order Algorithm for Unconstrained Problems.

Before proceeding with the derivation of the algorithm, a brief
note describing the approach used, is in order,

To overcome drawback 1) of Section 1, H (X, u,VX; t) is actually
minimized w. r. t. u. This minimizing u is denoted by u*. All quantities,
including H;i(ii, u, VX', t), are then evaluated at u*, Because u* min-
imizes H, the requirement thzt H;ulz(i’ u*,Vx‘, t) be positive-definite
is not nearly as restrictive as requiring H to be globaly, strictly con-

vex in u. Further, Hu (%, u*, VX', t) = o, which is a well known condition

of optimality.
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Variations 8x about X are then introduced and a linear relationship
found between du and 8x, which maintains the necessary condition of
optimality, Hu(fi + &, u* + by, Vx + Vxx bx;t) = o, for Ox sufficiently
small,

With the above two points in mind, the derivation ofthe second-
order algorithm will be understood readily.

The full deviation of the algorithm follows:

At any time t € [to,tf], Equation (14) is valid locally w. r. t. dx,
but globally w. r.t. du, Consider Equation (14) at time t with 0x(t) set

equal to zero; its r. h.s. becomes:

min [L(}'{,ﬁ+5u',t)+<Vx,f(i,ﬁ+5u;t)>] (16)
du

Instead of using a second-order prediction of the minimizing u,
as is done in [1], [2], [3] and [4], let us completely minimize the con-
tents of the square brackets in Equation (16) w. r. t. du; this may be
done analytically or, if necessary, numerically,

lLet the minimizing control be u* =G + du*, Expression (16) be-

comes:
L (%, u*;t) + (Vx,f(i,u*;t) > (17)

Now consider variations &x about X, i.e. re-introduce dx.
In order to maintain minimality of the r, h, s, of (14) the min must
du

be re-introduced;, however, du is now measured with reference to u*,

-3V da (BVX 5 2 (5 aVxx ox ) =
3 T3 - vupor O0x ) - w (kR x ) =

min [L(X + 8x,u* + duyt) + <vx +V, 8%, £(% + bx, u* + 8u; t) >
du
(18)
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Of course, by allowing these large (global) changes in control,
large 0x's will be introduced via Equation (7). The 3x's must, in some
way, be restrained in size in order that the second-order expansion for
V be valid, .This point is discussed later,

Define
H(x,u,V ;t) = L(x,u;t) + <Vx,f(x, u; t) ) (19)

The r. h.s. of (18) becomes:

min H(X + 0x,u* + 0u,V_+V _0x;t) (20)
8 x XX

Since u* minimizes H(X, u, VX‘, t), the following necessary condition holds:

Hu()?,u"‘,Vx, t) = o (21)

Expanding (20) about X, u* the following expression is obtained:

min [H + (H ,8ud + (H_,dx) + {V__f,0x)
5u u x XX

+ (bu, (H r vy )ox)+ % (bu,H du)
ux @ u xxX uu

+% (6x,(H _+ fT V. +V_f)d 7 +higher-order terms |
XX X XX XX X
(22)
All quantities in (22) are evaluated at X, u*; t.
From Equation (21), Hu = 0, so the terms involving %u in (22) are:
(du, (H _+ fT vV )ox )+ 2 (du,H du) + higher-order terms
ux u xXx uu
(23)
If du is of the same order as 8x then these terms are quadratic in &¢x +
higher-order terms in 0x, There is, therefore, no point in finding a
relationship between du and 8x which is of order higher than linear, since
terms higher than second-order in dx are neglected, (Since the l.h.s. of

(18) is expanded only to second-order in 8x.) A relationship of the following

form is thereiore, required:
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5u = B 6}{ (24)

where B is chosen to minimize the contents of the square brackets in
Expression (22).
A necessary condition for minimality is obtained by differentiating

(22) w. r.t. Su and equating to zero.

H +H_ Su+(H _ + Ty ) 8% + higher-order terms = o
u uu ux u XX
(25)
Substituting (24) into (25):

H +H Bx+(H _ + fTV ) 8x + higher-order terms in
u uu ux  u X%

& = o (26)

From Equation (21), Hu = o0. For (26) to hold for 8x sufficiently small,
coefficients of the first-order terms may be equated to zero to yield:

_ -l T
B=-H_ (H _+fV ) (27)

Quantities in (27) are evaluated at x, u*; t.
This Bis the optimal linear feedback controller which maintains the
necessary condition of optimality Hu(i + 6x, u* + 8u, Vo t Vs 6x;t) = o
for 8x sufficiently small,

Substituting (24) into (22) and neglecting terms of order higher than

the second, one obtains:
T T
H+(H +V _ f+B H ,)+#% (bx,(H.__ +f V. _+
X XX u XX X XX
T
V. _f -B H_B)bx) (28)
XX X uu

Expression (28) equals the 1. h. s. of Equation (18). Since equality holds
for all & sufficiently small, the coefficients of like powers of 8x may

be equated to obtain:
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-3V  3da -y
3t T3t
-3V

X _ T
YT —HX+VXXf+B Hu

-3V
XX _ T T -1,
5t - HXX + fx VXX + VXX fX - (HU.X + fu VXX)’I\I_IUU (Hux +
LV )
u XX
(29)

All quantities evaluated at X, u*; t,
v, a, Vx and Vxx are all functions of x and t along the nominal X

trajectory so:

3 o
ST +a®mn) =g (V+a) + (V1% 56)
-
Also V. =X + V. _£(%,T5t)
X t XX
_ 3V,
Vex T3 (30)

since higher-order terms of V have been truncated.

Using Equations (30) in (29) and noting that -V (X;t) = L (%, G; t):

-a=H - H(%,4,V ;t)
X

. _ - —, T =0
-V, sH_ +V _(f-£(XWt)) +B H

N o=H 4TV +vV € S(H_ +frv )TH'I(H +
XX XX X XX XX X ux u XX uu ux

Ly )

u XX

(31)
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Unless otherwise stated, all quantities are evaluated at X,u*;t. (The

symbolism H:o is used to indicate that Hu =o0.)

Att =t V(>‘<‘,tf) =F(x (tf)',t

£ g

whence: a(tf) =0
Vx(tf) = Fx(i (tf)', tf)
V. (tp = F_ (Xt t,) (32)

Equations (32) are boundry conditions for the differential Equations (31).

These equations are similar to those obtained by Mitter [2], McReynolds
and Bryson [3] and Mayne [4]. An important difference is that the above

equations are evaluated at X, u* and not X, .

The new control that is applied to the system is, of course
u =10+ bu* + B& = u* + Bdx (33)

The above theory assumes that the dx's generated by (33) will
be small enough to justify the second-order expansions used earlier,

If &x becomes too large, a scale factor € ; 0 <€ < 1 cannot be
placed in front of du* (du* = u* - G), as is done in [2], [3] and [4], since
u* =4 + Su* is imbedded in the reverse differential Equations (31) which
have already been integrated., Moreover, H is often non-convex w, r, t, u,
which precludes this type of linear interpoldation between @ and G + du¥,

(In the L. Q. P. problem there is no difficulity since immediate

application of (33) yields the optimal solution,)

4, A New 'Step Size Adjustment Method. '

Substituting (33) into (7), the following equation is obtained:

%t (X + 0x) = (X + Ox,u* + Bdx; t) (34)
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with ?;(to) + Ox (to) =X

Since 6x(t0) = 0, the dx's produced by (34) are due to the driving action
of du* = u* - G,

A way in which the size of the dx's can be restrained is by altering
the time interval over which Equation (34) is integrated.

Consider the time interval [tl’tf] where t < t, < t.. Assume that

one runs along the nominal trajectory X from to to tl' At time t = tl’
x(tl) = i(tl) since the path of the nominal trajectory has been followed

from to to tl' (i.e. 8x(t); t e [to’tl] is zero) Now consider integrating

(34) over the time interval [tl,t If ty <t and [tl,t is small, then

f]' f f]

the 8x's produced by (34) in this interval will be small, even for large

du*, since there is very little time over which to integrate the differential

equation:
gt- (% + 0x) = £(% + bx, uk + Box; 1) x(t)) + bx(t)) = %(t)
(35)
By making t1 near to tf one can force the dx's to be as small as one
pleases,

The above description is summarised in the following statement:

There exists a time t,, sufficiently close to tes in the range

1’

tos tl < tf, such that if the nominal trajectory is followed from to to t,

and then (35) is integrated from 1:1 to t,, the 8x's produced by (35) in

£
the interval [tl’tf] will be enough for the second-order expansions of
V, L and f to be valid,

The following questions must be answered:

1) How does one decide if the 8x's are 'small enough' ?

2) How does one chose a t, such that the 8x's produced are

1

'small enough' ?
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t
1) Recall that |a(§—<-,t1) I = I f [H - H(x, T, Vx',t) ] dt l is the predicted
te
improvement in cost when starting at the point i(‘cl)‘,t1 and using u(T) =
wk (1) + B(T) dx(T);7T € [tl,tf],
Assume for the moment that t) = to' (i. e. consider the whole
time interval [to,tf].) Integrate (35) and calculate the cost V. The

actual improvement in cost is

AV =V (X, to) - V(% to) (36)

If this actual improvement in cost is 'near' to the predicted value
IE (x',tl) l , then the 0x's produced by the new control, acting through
Equation (35), are considered 'small enough'.
It is convenient, in practice, to define 'near' in the following way:
If the following inequality is satisfied, AV is considered to be

'near' | a (X, tl) l

Ala\/;i-,tl)l Zesczo 7

In practice c is set as 0, 5. There are no hard and fast rules for setting
c, Certainly it should be greater then or equal to zero since a negative
AV is inadmissible, ¢ should not be greater then unity since one should
not expect improvements in cost greater than predicted, if the expansions
for V,L and f are valid. Moreover, ¢ should be somewhat less than
unity so that any decisions based on (37) are not influenced by round

off errors in the computations.

2) If test (37) is passed with t1 = t0 all is well, and the next iteration of
the main algorithms may be begun with the knowledge that a reasonable

reduction in cost of AV has been made, If (37) is not satisfied then set
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t =—2—-—+t =t (38)

The above procedure is repeated with this t. and (37) is checked again

1

(with the new AV), If it is satisfied then the next iteration is begun, If

not, then set

17 T Tt Tt (39)

and repeat again,
Subdividing [to, tf] in this way, there will come a time t; when
iteration (37) is satisfied.

In general
t, = = +t =t (40)

wherer =o,}.... and t =2t - t,
00 o f

Notice that the new nominal trajectory will sometimes have a

corner at t1 since ﬁ(tl) may be different from u*(tl). This introduces

no difficulity provided that the numerical integration routine used is
capable of handling differential equations with discontinuous right hand
sides, An example of such a method is the Fourth-order Runge-Kutta
routine,

It may happen that the nominal trajectory X (t) is optimal on an

interval [t IR t, € [to’tf]’ but is non-optimal on the interval [to’tf]‘

2

If tl is being found in the manner outlined above, then a trial t1 mavy

fall in the interval [tz,t The Ox's generated in the interval [tl, tf]

f]'

would then be zero - because u¥(t) =a(t); t € [tZ'tf] - and no reduction
in cost would occur, even though the whole trajectory X(t); t € [to,tf] is

One must ensure, therefore, that t, will never

non-optimal in [t,,t 1

f]‘

fall in [tz,t This condition is ensured easily in the following way:

bl
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At t= tf, a(X,t) = o. When integrating the backwards equations
monitor la(i‘, t) I . Record the time te‘ff when la(i; t) | becomes different
from zero. (Or in practice, when it becomes greater then a small,

positive quantity, N ). The trajectory between teff and tf satisfies a

necessary condition of optimality, viz:

a(X;t) =o;te [t (41)

ot bl

If, on the forwards run, a time t, # to needs to be found then the tirne

1

interval [to’teff] is subdivided as described earlier, and not [to’tf]'
As the overall trajectory becomes more and more optimal, from iteration
to iteration, so teff"’ to’ Finally, on an optimal trajectory, la(:‘(; t) | < T\l',

te [to, t(Jandt_.. =t_and the computation is stopped.

f] f

When programming algorithms on a digital computer it is generally
necessary to use a numerical integration routine to integrate the differ-
ential equations, This means that the interval [to,tf] is divided into
N-1 time steps. (i.e. t going from 1 to N)

The subdivision of [to,t used for determining t, must be done

eff]

w. r.t, this discretised scale., i,e. Now a time N1 must be sought,

N1 € [I,Neff], where N1 is given by
Neff ) Nor
Ny s * N " Nor 1 (42)
where Noo =2 - Neff and r =o0,1.... Integer division is used in (42).

r is increased until N, = Neff -1 It Ne = 1 then only r = o is used.

ff
It should be appreciated that since there are a finite number

N - 1 of discrete time steps, this subdivision can only be done a finite

number of times. The smallest possible non zero time interval is
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It is clear that N must be large enough such that the &'s

produced during this basic time interval are 'small enough'. This
restriction is a practical one, brought about by the discrete time routine
of the digital computation.

When AV and ‘a(i;Nl)| are small, but > 1’11 , the criterion (37) may
be too severe with ¢ = 0, 5, owing to round off errors. 1i.e. there may

come a stage where (37) remains unsatisfied even when N, = Ne - 1.

1 ff

If this happens, set ¢ = 0. 0 and repeat the procedure for determining

Nl' ¢ = o0 is a much less strirngent test because it asks only that AV > o,

If once again (37) is unsatisfied, even when N, = Ne - 1, then stop

1

the computation since no further reduction in cost is possible. This

ff

implies that either optimality has been attained (in which case

| a(x; to) | < uh and so Neff < 1) or N is not large enough and hence _t_f -t

N -1

is too large a basic time interval, Usually, however, the N needed
for accurate integration of the differential equations is large enough;
the contrary has been encountered only in some problems which are
near singular and hence extremely sénsitive to changes in u, In these
cases it may prove desirable to use a very simple integration routine
(Euler) and a large number of steps, N,

A summary of the 'Step Size Adjustment Method' is given in Flow

Chart 1.

5. The Overall Computational Precedure,

The computational procedure is given in Flow Chart II,
The minimization of H w, r.t. u, required when going backwards
in time, mav be done either analytically or by using one of the well

known hill climbing techniques. [10]
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Using a nominal control @ (t); te [tg,tf| run a
nominal X (t) trajectory. Calculate the “nominal
cost V (Xp; to). Store the X and U trajectories

and V.

} K

Using boundary conditions (32), integrate equa-
tions (31) backwards from tf to ta?’ all the while
minimizing H w.r.t.u to obtain u*, and storing
u*(t) and B(t). Note also the time Neff
when |a(X;t)| becomes greater than 7,. 7,
chosen from numerical stability considerations.

i

\ Apply the "“step size adjustment method" (s.a.m.)
to obtain a new improved trajectory. If the cur-
rent nominal control is optimal or if an improved
control cannot be found, then s.a.m. halts the
computation,

If an improved trajectory is obtained, replace
the old nominal X, U and V by these new values.

Y

FLOW CHART I: THE OVERALL COMPUTATIONAL
PROCEDURE
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6. Characteristics of the Algorithm,

1) The procedure exhibits one step convergence on L.Q. P,
problems [9].

2) In a neighborhood of the optimum, convergence is rapid for
non-linear problems because the second-order expansions represent
the functions V°, L and f well, for small 6x and du,

3) The algorithm is very much more powerful than the existing
methods [1], [2], [3] and [4] for the following reason:

H;‘ll (%, 4, Vx', t) is not required to be positive definite along non-
optimal nominal trajectories. In this algorithm H (X, u, Vx; t) is min-
imized w, r.t, u and so it is required only that Hl-nl1 (%X, u, Vx-, t) be
positive-definite at the minimizing u = u*, i.e, H:nll()_c, u, Vx; t) must
be strictly convex only in the neighborhood of u*, This is a much
less restrictive requirement and so the algorithm is capable of handl-
ing a larger class of non-linear problems than the second-order or
second - variation methods,

4) In some problems, the solution of the Riccati equation becomes
unbounded along some nominal trajectories though along optimal trajec-
tories it always has a bounded solution., The new algorithm is able to
compute optimal control for these problems whereas the existing methods
are not, This is illustrated by example II to follow,

5) If the &x's produced by the new control are too large, as mea-
sured by criterion (37), then the 'step size adjustment routine' must be
used, If the problem is very non-linear the routine will have to be used
a number of times in order to determine tl, which will be close to tf.
However, as tle tf, (35) is integrated over ever decreasing time inter-

vals [tl,tf]. This is in contrast with methods [1], [2], [3] and [4] where,
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in order to determine the scale factor €, the x equation has to be in-

tegrated over the whole time interval [to, t So, in non-linear pro-

f]'
blems it is likely that the new algorithm will use less computing time
in determining ty than existing methods in determining €.

6) The algorithm requires the integration of n differential equ-

ations less than [2] and [3]. Mitter and McReynolds and Bryson integrate

an n -.vector differential equation, -h, additional to their equation for A,

7. A Computational Trick that Improves Convergence Rate,

In the algorithm the new control is computed using
u(t) = uwk(t) + B(t) dx(t) (43)

It can happen, in non-linear problems,that B (t) 8x (t) becomes too large
and so invalidates the local expansions in Sdu. However, 0x might still

be small enough for

V (E+0x,t) =V +V__ 0x
b4 X XX

to be valid.
The following alternative way can be used for computing u(t):

Instead of storing u*(t), B(t) store Vx(t) and Vxx(t). Compute
u(t) directly, by minimizing H(X + 0x, u, VotV Ox; t) w. r.t. u either
analytically or wnsing [10]. In this way the radius of convergence of

the algorithm may be increased,

8. Sufficient Conditions for a Reduction in Cost at Each Iteration,

In order that the cost decrease at each iteration, for dx sufficiently
small, a(X;t) must be less than zero. Sufficient conditions for

a(X;t,) < o are that, for t € [t ,t ]
1 o’ f
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1) H(%,u%, V1) < H(X, T, V3t ; u*f

Since u* minimizes H, 1) is ensured if:
H (X,u*,V ;t) =0
u x
T (%,u*,V ;t) is positive-definite
uu x
2) The solutions of Equations (31) be bounded.

t
1
Proof: a (%, t) l=lf [H(}'{,u*,Vx; t) - H(i,ﬁ,Vx‘, t) ] dt (44)
t
f

For a(}"c',tl) < o it is clearly gufficient that:
H (%, u%, V1) < H(X, T,V t) | u* 70 (45)
u* is the control that minimizes H, so (45) is ttue for u* # 1
if H (X,u*,V,t) =o
u x
and H'l (X, u*, V_;t) is positive-definite
uu X

The quantities manipulated above must be bounded in magnitude
for these conditions to be valid, so it is required that the solutions of

Equations (31) be bounded,

9. A New First-Order Algorithm for Unconstrained Problems.

Assume that V(X + 0x;t) is expanded to first-order only.

V()‘(‘+5x',t)=v+a+<Vx,6x) (46)

The following set of equations are obtained easily

-a =H - H(S’:,ﬁ,Vx',t) ;a(tf) =0

.V =H L Vo (t) = F_(R(t):t) (47)
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The quantities are evaluated at X, u¥;t unless otherwise stated, u* is
the control that minimizes H (X, u, Vx; t) w.r.t. u,

The new control that is applied is:

u(t) =uk(t) ; te [tl,t (48)

f]

The 'step size adjustment method' is used to keep 6x small enough.

10, Characteristics of the First-Order Algorithm,

1) The algorithm is fundamentally different from the gradient
or first- variation method in that Equations (47) is integrated backwards
along X, u* and the new control on the forwards run is given by (48).

2) The algorithm uses the 'step size adjustment routine' discribed
earlier., Since V is expanded to first-order it might be necessary to
repeatedly use the 'step size adjustment routine' a number of times

before an acceptable t, is found. However, the integration of the x

1

equation is done over ever decreasing time intervals [tl,tf] and so it
is likely that the method will be faster than the gradient method where
€ has to be chosen. Note also that t) € [to,t

€is required to be non-zero but no upper bound is available for it. This

f]' In the gradient method

usually makes the choice of €, tricky,

3) Consider the problem:

x = Ax + Bu

t
f
min V =[ L(u,t)dt + <c,x(tf) ) (49)

(o]

If . is a convex function of u, it can be shown that the first-order

. . . . O .. 1. . N
algorithm solves this problem in one step since V' is linear in x. This
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is not true of the gradient method where only a small change in con-

trol, Su=-¢ Hu’ is made at each iteration.

11, Computed Examples,

The following computed examples serve to illustrate some of the
advantages of the new second-order algorithm,

1) %=-.2x+10Tanhu ;x(t) =5.0 (50)

Choose u(t) ; t € [0,0. 5] to minimize
5

. _ [/ 2 2 2
Vix_it)) —/(: (10x™ +u™)dt + 10x" (t,)

The problem, though simple, is a good illustrative one since along
certain non-optimal trajectories H;‘ll (x, T, Vx‘, t) is not positive,

For this problem:

H(x,u,V,;t) = 10x° +u® + V_(-o0. 2x + 10Tanh u) (51)
2
where Hu =2u + 10Vx(1 - Tanh u) (52)
and H =2 -«20V_Tanhu (1 - Tanhzu) (53)
uu x

The new second-order algorithm and those of [2], [3] and[4]
were programmed, A fourth-order Runge-Kutta routine was used for the
integration, The interval [0, 0. 5] was divided into 100 steps.

From (53) it is clear that there is no guarantee that H:ull will be
greater than zero for any nominal trajectory X,U. 1i.e. there is no
guarantee that methods [2], [3] and [4] will be successful,

The new algorithm requires only that H;lll (%, u*, Vx‘, t) > o. Atu =u*

one has, since Hu (%, u*,Vx', t) = o, that:
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2wk
1 - Tanh2 u* = 2y

rov. ¢ HV 7o
X
=1 iV, = o (54)
Using Equation (54) in (53):
H (X,u%,V ,t) =2 +4u* Tanhu* (55)
uu X

u* Tanh u* 2 o for all u* so, from (55), Huu (X, u*, Vx', t) > o regardless of

the nominal trajectory, The new algorithm should, therefore, not fail

to solve this problem,

A nominal control u(t) =+ 1 ;te [0,0.5] was chosen and an attempt
was made to use methods [2], [3] and ]4]. For this nominal control,
Huu(i, o,V t) turned out to be negative for t € [0,0.5] and so the algor-
ithms were unable to improve the trajectory.

Start.ing from the same nominal trajectory, the new algorithm was
tried, By (55) above, Huu (}‘c,u*,VX;t) remained positive on the interval
[0,.5]. (u* was determined by quadratic prediction [11]). On the for-
ward run a reduction in cost was achieved and after two iterations, the
optimal trajectory was reached., The cost was reduced from the nominal
value of 886.0 to the optimal value of 41. 6. The trajectory was considered
optimal when Ia(xo‘, to) |, the predicted reduction in cost, was less than
0.1. Figure 1 shows the nominal and optimal control functions.

This simple example illustrates the failure of methods [2], [3], [4]
to find a solution to a control problem where the nominal trajectory is

lll(i,‘ﬁ, VX‘, t) is non-positive-definite., The new algorithm

such that H’
u
where H (%, u, VX', t) is minimized w.r, t. u easily finds the optimal tra-

jectory,
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It should be noted that when using the new algorithm, the 'com-
Putational trick' of minimizing H(X + 0x, u, VX + Vxx Ox;t) w. r.t. u
was used on the forward run, The same problem was tried using (43)
to calculate the new control; four iterations were required to reaca
the optimum. This is owing to the fact that H is very non-linear in
u and so, u = u¥ + B is valid only for very small variations du from
u*, An increased radius of convergence is thus obtained by choosing
u by mLiln H(x + 0x, u,Vx + Vxx Ox; t),

2) The Rayleigh Equation

In this example, the solution of the Riccati equation becomes

unbounded when integrating backwards from t_ to t0 along some nom-

f
inal trajectories. It is demonstrated that the new second-order algor-
ithm is still able to achieve a reduction in cost at each iteration and
moreover, reaches the optimal trajectory after 9 iterations. The

methods [2], [3] and [4] fail to solve this problem.

Consider the following control problem

X, =X, : Xy (to) = -5,
X, = -x, +1 4%, - 14x3 + 4u ; x,(t ) = -5 (56)
2 1 ’ 2 2 T2V o ’
Find u(t);t €[o, 2, 5] to minimize
2.5
\% =f (xf ¥ ud) at (57)
o
2 2 3
H=x,+u +V =x, +V_ (-x, +1.4x, - .14%," + 4u)
1 3 2 Xy 1 2 2
H =2u+4V_;, whence u* = .2V
u x x
2 2
H =2>0 (58)

uu
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H = 2x. -V
x 1 X
2
2
Vx + 1,4Vx - ,42x2 VX
1 2 2 (59)
H = o
ux
H = 2 0o
XX
o -.84Vx X,
B 2 _J (60)

An arbitrary nominal control of

(t) =-.5 ; teo,2.5]

al

was chosen,

The fourth order Runge-Kutta routine was used for the integrations.
One hundred integration steps were used. The methods [2], [3], [4]
were tried firstly, It was found that during the backwards integration
of the \}x’ \}xx equations, their solutions became unbounded. The in~
tegration step-size was reduced by increasing the number of integration
steps from 100 to 1000, but the same behavior persisted. This meant
that the methods could not be used.

Since, for this problem, the {’x equation is linear in Vx’ its sol-
ution can be unbounded only if Vxx becomes unbounded. 1i. e. if the
solution of the Riccati equation becomes unbounded,

From [9], sufficient conditions for the boundedness of the Riccati

sclution are that:
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H -H _'H 'H s positive semi-definite
XX ux uu ux

H "1is positive definite
uu

Fxx(x(tf)-,tf) is positive semi-definite

The second and third conditions are satisfied since Huu =2, Fxx = o.
In addition H _ @3 o,
ux

It turns out that Hxx given by (59) is not positive semi-definite
all along the nominal trajectory. 1i.e. the above sufficiency conditions
for the boundedness of the solution of the Riccati equation are not
satisfied. This could account for the observed unboundedness of the
V. solution,

XX

The new algorithm was tried next, Once again the solutions of

the backwards equations became unbounded. However, using the 'step

size adjustment method' a t, could be found; t, < t, < te - (tb the time

1 b 1

at which the solutions became unbounded.) - such that an improvement
in cost resulted, As the method progressed from iteration to iteration,
so t, became nearer and nearer t, Finally the optimal trajectory was
reached along which all the equations had bounded solutions. i.e. the

new second-order algorithm was entirely successful.

Fig. 2 shows Vx (t) for various iterations, illustrating how the
2

time tb moved backwards to tO as the optimum trajectory was approach-
ed. Fig. 3 shows the cost V as a function of the iteration number,
The above example shows that the new algorithm is more power-

ful than existing one's in the sense that the boundedness of the solutions

of the backwards equations is not required on the whole interval [to’ tf],
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along non-optimal trajectories, It is required only that they have

bounded solutions on the interval [t t, < tg and that x(t) ;

ptel s by
te€ [tb,tf] be non-optimal unless t, < to.

If these conditions are fulfilled, then one can always find a tl,
such that the cost decreases.

It should be clear from the above, that the conditions of Sectiqn 8

are 'over sufficient',

12, Control Inequality Constraints: A New Second-Order Algorithm.

Consider the control problem where constraints of the form (3)

are present, i.e.
g(ut) <o (61)

where g is a p< m vector function.

In the past, it has not been obvious how to develop second-order
algorithms for solving this problem. The following is quoted from [12],
page 61:

'"While the steepest ascent method presents no difficulity when
upper and/or lower limits are present on the forcing signals (e. g. |u|_<. 1),
any iterative procedure based on expansibns does not appear to be
applicable in such cases. '

It is shown in this Section that constraints of the form (61) can be
included in the second-order analysis,

The following assumption is made:

The optimal control function uo(t) is continuous on the whole interval

[to,tf]. That is, if and when a control hits or leaves a constraint, it
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does so without a sudden jump. This is illustrated in Fig. 4. Times
ta and ti are time at which the constraint becomes active and inactive
respectively.

The above -assumption is not overly restrictive; many control
inequality constrained problems exhibit this behavior. An exception is
the bang-bang problem where H,, E0° and the constraint g is of the form
Iul < 1. Solutions to this problem will be discribed in a future paper,

The r. h, s, of the D.D. P. equation (14) is:

min [H(X + 0x,0 + 8u, V.;t) + {V__dx,f(x + bx,a + dujt) ) ]
611 X XX

(62)
As in Section 3, consider the case where 0x(t) = 0. The minimization

w. r.t. du must be carried out subject to constraint (61).

Define the set

U={u:g(yt)<o ] (63)
then (62) becomes:

min [H(X,a + du, V_; t) ] (64)
du

G+0ueU
Let Y be the control that minimizes H w. r.t. u subject to u € U,

Expression (64) becomes
H(%, 8, Vi t) (65)
(The constrained minimization in (64) is a non-linear programming

problem. A useful method of solving it appears to be that of Fiacco

and McCormick [13]. In control problems it often happens that there
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are only a few controls and a few simple constraints on u; the min-
imization is then performed easily, )

If the minimization is performed and it turns out that no con-
straints are active (i. e, strict inequality holds, in (61), for u = G, so
d= u*) then the algorithm is the same as that of Section 3.

Assume that 6 of the constraints are active, (o< 6_<. p) refer to

them as @(u; t).
g0 =0 (66)

Now adjoin (66) to (65) using a vector language multiplier A of dim-

. A
ension p.

i e. TGV ALY =HES VY + L 2@) (67)

A ' .
Under certain assumptions on H and g, given in Section 14, the fol-

. . . s A
lowing equations are necessary for determining A and u:

£ =H x4,V ¢ @E(G-, B = o (68)
g{— = @(ﬁ; t) =o (69)

Assume now that small variations 0x in x are introduced at time t,

and that all the constraints @(G + 8u;t) remain active. (i.e. assume
that constraints 'é are well and truly active; Ikil >>0,1=1,. .ﬁ), This
will be true at all times t except those at which a constraint is just
becoming active or inactive. (In Fig. 4 such times are ta and ti)' Ig-
nore such boundry points for the moment,

Re-introducing 8x into (67):
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min [H(% +5x,{\1 +0u,V,t) +<V _ bx,f(x+ 6x,G + du, t) >
du % XX

+ (A + N, B0+ buyt) > ] (70)

6\ is present also. on the re-introduction of %, since the constraints
’g\ at & + du are assumed to remain active, and so A must change to
A + O\ to ensure this,

The following necessary conditions, analogous to (68) and (69),

are obtained:

H (R+0x,8+0u,V it) +fi(x+ &0 +0ut)V_ 6x
u X u XX
+ gf(ﬁ +8ut) (A + 8\) = o

and g (4 + 6ujt) = o (71)

Expanding to first-order about i,ﬁ and using (68) and (69), the following

equations result:

A AT T
SN = -
(Hu + kguu) du + gu A (H + qu ) 8x (72)

u

éuﬁu =0 (73)

All quantities evaluated at X, G-,t. (Reasons for expanding (71) to first-
order only are similar to those discussed in detail in Section 3)

From the above equations:

_ A A -1AT ;-1 A A -1
or = - [gu (Huu * >\gU.U.) gu ] gu (Huu + kguu) (HuX +
fTV )%
u XX

(74)
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A -1 AT A
bu = - I - H
and u (Huu + >\guu) { m " 8u [gu( uu + )\guu) u

) A -1 T
(Huu * )\guu) } (Hux + fu Vxx) ox

A -1AT ]-1/\

u

(75)

where Im is the unit matrix of dimension m, the number of controls,

Expanding (70) to second-order, substituting in expressions (74)

and (75) for 8A and Su, and using equations (68) and (69), the following

expression is obtained:

H+ (H_ +V _f &) +% (ox,[H _+1V _+V__f
x XX XX X XX XX X
- (H +fTV )TZT(H +>\/g\ )-IZ (H +fTV )
ux u XX uu uu ux u XX
AT (A A -1AT .-1A A -1
- . A
where zZ Im g, [gu(Huu + }\guu) gu ] gu,(Huu * guu)

] 6x )

(76)

(77)

Equating (76) to the r. h, s. of (14), the following equations are obtained

in the manner described in Section 3:

-a =H - H(X,4,V;t)
. X

-VX = HX + Vxx(f - f(%,T,t))

2V =H +fv +v £ -@®m_ +iv ) zTw
X XX XX X ux u XX u

XX XX u

-Z(H__+ fTV )
ux u XX

A
u=<\i+86x

where B A8 )y lze RV
’ u uu ux u xXx

i
A
X

u

and (1\ is chosen by min H (X, u, VX', t) which yields also the é\({i; t),
u
ueu

A is given by (68) and (69).

A
+Ag

uu

(78)

(79)

)
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Unless otherwise stated, all quantities are evaluated at X, G; t. Boundry
conditions are the same as before, namely Equations (32).
At times when no constraints are active, the above equations re-

duce to those of Section 3. (i.e. Z = Im)

In the above derivations, Huu + X/g\uu has been assumed positive-
definite, This condition ensures that uo(t) is continuous on the interval
[to, tf], as required earlier, and also that J (Equation (67)) has an uncon-

strained relative minimum w, r.t, uatu = {\1 Since Huu + X’g\uu is eval-

uated at ! and not the nominal U, global, strict convexity w, r.t. u of
H + (K,/é}, is not required, Local, strict convexity at 4 is sufficient:
many problems exhibit this property.

If there is onlyonecontrol then, from (73), du = o if §u # o and
Z =/é = o even if Huu + k/g\uu is non-positive. Note that in this case the
Riccati Equation degenerates into a linear matrix equation,

A:i boundry points where a constraint ceases to be active or inact-
ive, Z will change discontinuously. However, {\1 is continuous. It follows,
then, that only X}xx suffers a discontinuity,

From (79), note that when running forwards and generating the new
trial trajectory, u(t) will be discontinuous at times of boundry points
of the /g\ owing to the presence of discontinuity inZ, However, this
discontinuity does not affect the cost to second-order, This is intui-
tively so, and is proved in [6] and [14]. The proof, though simple,
is omitted here because of its length. The discontinuity in the forwards
u(t) can be overcome easily, if desired, by using the computationat
trick of Section 7. Since Vx and Vxx are continuous the u(t) so generated
will be continuous. On an optimal trajectory u =/1\1 = u° which is con-

tinuocus.
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The computational procedure for this algorithm is the same as
that described in Section 5 except that the minimization of Hw. r. t u
is done for u € U, This produces 3 and @ Using (68) and (69) X is
then calculated, which enables Z and% to be calculated using (77) and

(79). The nominal control G (t) is assumed to satisfy g(4;t) < o.

13, Characteristics of the Algorithm,

1} Control inequality constraints of the type g(u;t) < o can be
handled provided the optimal control function is continuous, It is be-
lieved that the algorithm is the only second-order method available
that can treat these problems.

2) The procedure does not exhibit one step convergence for the
L.Q.P. problem with linear control constraints because the optimal
cost Vo(x', t) for this problem is not quadratic,

3) The requirement that Huu(i,ﬁ, Vx-, t) + X%uu(ﬁ; t) be positive-
definite is rather restrictive. In a future paper the control problem

where this matrix is identically zero, will be treated.

14, Sufficient Conditions for a Reduction in Cost at Each Iteration.

In this and the next section it should be remembered that
/g\u({\l', t) =oand G € U,

Sufficient conditions to guarantee a(i-,tl) < o0 and hence a reduc-
tion in cost for 8x's sufficiently small are that for t € [to,tf]:
1) H(}‘;,{\J.,Vx;t)< H(%,T,V3t) ; % #a

AT A

2) g, (% t) has full rank B and 271 ';Hu(;—{,ﬁ,vx; t) ] has rank .

>

- A A 3 -1 . ..
3) [Huu(x, u, Vx" t) + )xguu(u, t) | * be positive-definite,

4) The solutions of the differential equations be bounded,
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Proof: t

1
a(:‘:-,tl) =f [H(}_{,{\l,v 1t) - H(X,4,V ;t) ]dt
x x
t
f
A sufficient condition for a(i;tl) < o is clearly
A
u

HEQ V< HEL V05 & AT, QandueUu

From linear equation theory [15], [16] necessary and sufficient con-
ditions for A to be determined from (68) are that:

ég(ﬁ', t) has full rank D

[@I(G; t)1H (%%, V,;t) ] has rank p

— A . . ..
For H(x,u, Vx', t) +< X, g(u;t) > to have an unconstrained relative mini-
A . —
mum w.r.t. uatu =u, which ensures a(x;tl) < o0, a necessary con-

dition is from [16], that:

A A A . e
Huu(x’ u,Vx,t) + )\guu(u,t) be positive difinite,

A
Further this allows the calculation of B and, together with /g\E(G', t)
having rank f‘), allows the calculation of Z, Also, the continuity of
G(t)', teft ,t,], is assured..
o’ 'f
Again, the differential equations are required to have bounded

solutions.

15. Control Inequality Constraints: A New First-Order Algorithm.

As in Section 9, a first-order algorithm emerges as a specizl

case of the second-order one.

-a=H - H(%, T,V 5t) ja(t) = o

-V _=H_ s V(tg) = F_(X(ty); t) (80)
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All quantities evaluated at X, G .t unless otherwise stated,
The new control that is applied is u(t) = 4(t) ; t € [tl,tf].
The implementation and characteristics of the algorithm are similar

to those of Sections 9 and 10,

16, Computed Examples,

Consider again the Rayleigh Equation, Example 2 of Section 11,

The following control constraints are introduced:

u] <1 (81)
Note that Huu = 2 and the constraints g(u;t) are of the form:

u-1<o ifu>o

utlzo ifu<o (82)

It is clear, therefore, that Huu + kguu is positive for all u, It
is seen easily that when the constraint is inactive Z = 1 and when active
Z = o and the Riccati equationbecomes a linear one.

Starting from the same nominal trajectory as before, the new
second-order algorithm found the optimal solution in 3 iterations. Fig. 5
shows the cost as a function of iteration number and Fig. 6 shows the
control function for various iterations. Note the jumps in the control
along non-optimal trajectories and observe that they disappear when
the optimal trajectory is reached.

It should be noted that the Riccati equation now has a bounded
solution on the whole interval [to,tf], even along non-optimal trajectories.
This is because, when Z =3 = o along the constraint, it becomes a
linear equation which cannot have an unbounded solution. The time in-
terval over whichZ =1, 3 # o is too small for the Riccati equation to

produce an unbounded solution.
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17. Equality End-Point Constraints and Implicity Given Final Time te
The algorithms described in this paper can be extended to solve
this class of problem. Complete details of the derivations are to be
found in [6] and [14]. These extensions are not described in this paper,
since the Lagrange multiplier techniques used in [6] and [14] are well
known [3], [17]. The algorithms do, however, require the integration

of less differential equations than those of [3].

18. Conclusion,

It is believed that the D. D. P, algorithms discribed in this paper
are contributions in the field of 'Numerical Techniques for Solving Opti-
mal Control Problems' in that they are able to handle a larger class of
of problems than was heretofore possible using second-variation successs
ive approximation methods.

A future paper will discribe D.D. P. techniques for solving bang-
bang problems. It is hoped to extend the D. D. P. approach to study
problems with state variable inequality constraints, and singular prob-

lems.
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